Approximate Inference in Graphical Models

نویسنده

  • Sholeh Forouzan
چکیده

OF THE DISSERTATION Approximate Inference in Graphical Models By Sholeh Forouzan Doctor of Philosophy in Computer Science University of California, Irvine, 2015 Professor Alexander Ihler, Chair Graphical models have become a central paradigm for knowledge representation and reasoning over models with large numbers of variables. Any useful application of these models involves inference, or reasoning about the state of the underlying variables and quantifying the models’ uncertainty about any assignment to them. Unfortunately, exact inference in graphical models is fundamentally intractable, which has led to significant interest in approximate inference algorithms. In this thesis we address several aspects of approximate inference that affect its quality. First, combining the ideas from variational inference and message passing on graphical models, we study how the regions over which the approximation is formed can be selected more effectively using a content-based scoring function that computes a local measure of the improvement to the upper bound to log partition function. We then extend this framework to use the available memory more efficiently, and show that this leads to better approximations. We propose different memory allocation strategies and empirically show how they can improve the quality of the approximation to the upper bound. Finally, we address the optimization algorithms used in approximate inference tasks. Focusing on maximum a posteriori (MAP) inference and linear programming (LP), we show how the Alternating Direction Method of Multipliers (ADMM) technique can provide an elegant algorithm for finding the saddle point

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Inference in Graphical Models using Tensor Decompositions

We demonstrate that tensor decompositions can be used to transform graphical models into structurally simpler graphical models that approximate the same joint probability distribution. In this way, standard inference algorithms such as the junction tree algorithm, can be used in order to use the transformed graphical model for approximate inference. The usefulness of the technique is demonstrat...

متن کامل

Approximate Inference in Collective Graphical Models

We study the problem of approximate inference in collective graphical models (CGMs), which were recently introduced to model the problem of learning and inference with noisy aggregate observations. We first analyze the complexity of inference in CGMs: unlike inference in conventional graphical models, exact inference in CGMs is NP-hard even for tree-structured models. We then develop a tractabl...

متن کامل

libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models

This paper describes the software package libDAI, a free & open source C++ library that provides implementations of various exact and approximate inference methods for graphical models with discrete-valued variables. libDAI supports directed graphical models (Bayesian networks) as well as undirected ones (Markov random fields and factor graphs). It offers various approximations of the partition...

متن کامل

Approximate inference in Gaussian graphical models

The focus of this thesis is approximate inference in Gaussian graphical models. A graphical model is a family of probability distributions in which the structure of interactions among the random variables is captured by a graph. Graphical models have become a powerful tool to describe complex high-dimensional systems specified through local interactions. While such models are extremely rich and...

متن کامل

Distributed MAP Inference for Undirected Graphical Models

Graphical models have widespread uses in information extraction and natural language processing. Recent improvements in approximate inference techniques [1, 2, 3, 4] have allowed exploration of dense models over a large number of variables. These applications include coreference resolution [5, 6], relation extraction [7], and joint inference [8, 9, 10]. But as the graphs grow to web scale, even...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015